Introduction to Seamless Switching Glossary

Anatomy of an NTSC video signal

Visibly yours

Raster

• The entire area of a CRT display or CRT video screen that is scanned by an electron beam.

Raster

- The entire area of a CRT display or CRT video screen that is scanned by an electron beam.
- To form a "frame," the beam scans from side to side and from top to bottom in a series of horizontal lines.

Raster

- The entire area of a CRT display or CRT video screen that is scanned by an electron beam.
- To form a "frame," the beam scans from side to side and from top to bottom in a series of horizontal lines.
- Once the first frame is drawn, the beam returns to the top (during the "vertical interval") to draw the next frame, and the sequence repeats.

Resolution and Scan Rate

• Scan Rate: The number of lines written on screen in one second, measured in kHz. For example, a resolution of 400 lines refreshed 60 times per second yields a scan rate of 24 kHz (60 x 400).

[n]kHz

Visibly yours

Resolution and Scan Rate

- Scan Rate: The number of lines written on screen in one second, measured in kHz. For example, a resolution of 400 lines refreshed 60 times per second yields a scan rate of 24 kHz (60 x 400).
- Resolution: The amount of active pixels that make up an image, stated as the horizontal pixel count by the vertical pixel count (e.g., 1024 X 768, XGA).

H Total Pixels

V Total Pixels

Visibly yours

Resolution and Scan Rate

- Scan Rate: The number of lines written on screen in one second, measured in kHz. For example, a resolution of 400 lines refreshed 60 times per second yields a scan rate of 24 kHz (60 x 400).
- **Resolution**: The amount of active pixels that make up an image, stated as the horizontal pixel count by the vertical pixel count (e.g., 1024 X 768, XGA).
- **Refresh Rate**: The maximum number of frames per second that a computer monitor can display, expressed in hertz.

[n] frames per second

Screen Resolutions

• **Standard** — These resolutions have a 1.33.1 (4:3) aspect ratio, except for SXGA, which is 1.25:1.

• Wide — HDTV uses a 1.78:1 aspect ratio (16:9).

 1:1 sampling ensures that all input pixels are sampled one time only, instead of being oversampled.

- 1:1 sampling ensures that all input pixels are sampled one time only, instead of being oversampled.
- The benefit is the best colorsampling ratio, yielding a perfect representation of each pixel's color.

- 1:1 sampling ensures that all input pixels are sampled one time only, instead of being oversampled.
- The benefit is the best colorsampling ratio, yielding a perfect representation of each pixel's color.
- For example, when you perform 1:1 sampling on a burst pattern (1 pixel on, 1 pixel off), the result is a clear, crisp image.

- 1:1 sampling ensures that all input pixels are sampled one time only, instead of being oversampled.
- The benefit is the best colorsampling ratio, yielding a perfect representation of each pixel's color.
- For example, when you perform 1:1 sampling on a burst pattern (1 pixel on, 1 pixel off), the result is a clear, crisp image.
- However, if you oversample the burst pattern, you will see image inaccuracies and a loss of sharpness.

Black burst

 A video signal that has no luminance or chrominance components, but which contains all the other elements of a video signal.

Video Waveform — Black burst

Black burst

- A video signal that has no luminance or chrominance components, but which contains all the other elements of a video signal.
- In a video "system," black burst is the reference signal commonly used for video timing purposes, to ensure that all signals (and all devices) are locked together and fully synchronous.

Visibly yours

Tri-level sync

• A sync (synchronization) level scheme developed for HDTV.

Video Waveform — Tri-level sync

Tri-level sync

- A sync (synchronization) level scheme developed for HDTV.
- In a tri-level sync signal, the sync line first goes low, then transitions high (while going through the reference voltage level), then drops back down to the reference voltage.

Video Waveform — Tri-level sync

Tri-level sync

- A sync (synchronization) level scheme developed for HDTV.
- In a tri-level sync signal, the sync line first goes low, then transitions high (while going through the reference voltage level), then drops back down to the reference voltage.
- The transition of the positivegoing signal through the reference voltage is the sync trigger.

Video Waveform — Tri-level sync

Visibly yours

Composite video

 A video signal in which the luminance (brightness), chrominance (color), blanking and sync pulses have been combined, rather then kept separate as in component video.

Composite video

Composite Video Connection

- A video signal in which the luminance (brightness), chrominance (color), blanking and sync pulses have been combined, rather then kept separate as in component video.
- Because both luminance and chrominance signals are encoded together, only a single connection wire is required.

Visibly yours

Composite video

Composite Video Connection

- A video signal in which the luminance (brightness), chrominance (color), blanking and sync pulses have been combined, rather then kept separate as in component video.
- Because both luminance and chrominance signals are encoded together, only a single connection wire is required.
- Note: CVBS is the acronym for Composite Video, Blanking and Sync.

Visibly yours

• A video signal in which the luminance (brightness) and chrominance (color) signals are retained separately, rather than combined (encoded).

- A video signal in which the luminance (brightness) and chrominance (color) signals are retained separately, rather than combined (encoded).
- Y = Luminance
 R-Y = Red minus Luminance
 B-Y = Blue minus Luminance

- A video signal in which the luminance (brightness) and chrominance (color) signals are retained separately, rather than combined (encoded).
- Y = Luminance
 R-Y = Red minus Luminance
 B-Y = Blue minus Luminance
- Common analog component formats are YUV (also known as R, R-Y, B-Y) and S-Video (Y/C).

- A video signal in which the luminance (brightness) and chrominance (color) signals are retained separately, rather than combined (encoded).
- Y = Luminance
 R-Y = Red minus Luminance
 B-Y = Blue minus Luminance
- Common analog component formats are YUV (also known as R, R-Y, B-Y) and S-Video (Y/C).
- Component digital video is comprised of separate signals represented digitally. Common formats are ITU-R 601 and Y, Cr, Cb.

